Sample Question Paper Class XII Session 2022-23 Mathematics (Code-041)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions :

- This Question paper contains five sections A, B, C, D and E. Each section is 1. compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

SECTION A (Multiple Choice Questions) Each question carries 1 mark

Q1. If A =[a_{ij}] is a skew-symmetric matrix of order n, then (a) $a_{ij} = \frac{1}{a_{ji}} \forall i, j$ (b) $a_{ij} \neq 0 \forall i, j$ (c) $a_{ij} = 0$, where i = j (d) $a_{ij} \neq 0$ where i = jQ2. If A is a square matrix of order 3, |A'| = -3, then |AA'| =(a) 9 (b) -9 (c) 3 (d) -3 Q3. The area of a triangle with vertices A, B, C is given by (a) $|\overrightarrow{AB} \times \overrightarrow{AC}|$ (b) $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$ (b) $\frac{1}{4} |\overrightarrow{AC} \times \overrightarrow{AB}|$ (d) $\frac{1}{8} |\overrightarrow{AC} \times \overrightarrow{AB}|$ Q4. The value of 'k' for which the function $f(x) =\begin{cases} \frac{1-\cos 4x}{8x^2}, & \text{if } x \neq 0\\ k, & \text{if } x = 0 \end{cases}$ is continuous at x = 0 is (a) 0 (b) -1 (c) 1. Q5. If $f'(x) = x + \frac{1}{x}$, then f(x) is (d) 2(a) $x^2 + \log |x| + C$ (b) $\frac{x^2}{2} + \log |x| + C$ (c) $\frac{x}{2} + \log |x| + C$ (d) $\frac{x}{2} - \log |x| + C$ Q6. If m and n, respectively, are the order and the degree of the differential equation $\frac{d}{dx}\left[\left(\frac{dy}{dx}\right)\right]^4 = 0$, then m + n = (a) 1 (b) 2 (c) 3 (d) 4 Q7. The solution set of the inequality 3x + 5y < 4 is

(a) an open half-plane not containing the origin.

(b) an open half-plane containing the origin.

- (c) the whole XY-plane not containing the line 3x + 5y = 4.
- (d) a closed half plane containing the origin.

- Q8. The scalar projection of the vector $3\hat{i} \hat{j} 2\hat{k}$ on the vector $\hat{i} + 2\hat{j} 3\hat{k}$ is (a) $\frac{7}{\sqrt{14}}$ (b) $\frac{7}{14}$ (c) $\frac{6}{13}$ (d) $\frac{7}{2}$
- Q9. The value of $\int_{2}^{3} \frac{x}{x^{2}+1} dx$ is (a) log4 (b) $log \frac{3}{2}$ (c) $\frac{1}{2} log2$ (d) $log \frac{9}{4}$

Q10. If A, B are non-singular square matrices of the same order, then $(AB^{-1})^{-1} =$ (a) $A^{-1}B$ (b) $A^{-1}B^{-1}$ (c) BA^{-1} (d) AB

Q11. The corner points of the shaded unbounded feasible region of an LPP are (0, 4), (0.6, 1.6) and (3, 0) as shown in the figure. The minimum value of the objective function Z = 4x + 6y occurs at

- Q17. If two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$, then $|\vec{a} 2\vec{b}|$ is equal to
 - (a) $\sqrt{2}$ (b) $2\sqrt{6}$ (c) 24 (d) $2\sqrt{2}$
- Q18. P is a point on the line joining the points A(0,5,-2) and B(3,-1,2). If the x-coordinate of P is 6, then its z-coordinate is
 - (a) 10 (b) 6 (c) -6 (d) -10

ASSERTION-REASON BASED QUESTIONS

In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

Q19. Assertion (A): The domain of the function $\sec^{-1}2x$ is $\left(-\infty, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, \infty\right)$ Reason (R): $\sec^{-1}(-2) = -\frac{\pi}{4}$

Q20. Assertion (A): The acute angle between the line $\bar{r} = \hat{i} + \hat{j} + 2\hat{k} + \lambda(\hat{i} - \hat{j})$ and the x-axis is $\frac{\pi}{4}$

Reason(R): The acute angle θ between the lines

 $\bar{r} = x_1\hat{\iota} + y_1\hat{j} + z_1\hat{k} + \lambda(a_1\hat{\iota} + b_1\hat{j} + c_1\hat{k}) \text{ and}$ $\bar{r} = x_2\hat{\iota} + y_2\hat{j} + z_2\hat{k} + \mu(a_2\hat{\iota} + b_2\hat{j} + c_2\hat{k}) \text{ is given by } \cos\theta = \frac{|a_1a_2 + b_1b_2 + c_1c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}}$

SECTION B

This section comprises of very short answer type-questions (VSA) of 2 marks each

Q21. Find the value of $sin^{-1}[sin(\frac{13\pi}{7})]$

Prove that the function f is surjective, where
$$f: N \rightarrow N$$
 such that

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

OR

Is the function injective? Justify your answer.

- Q22. A man 1.6 m tall walks at the rate of 0.3 m/sec away from a street light that is 4 m above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow lengthening?
- Q23. If $\vec{a} = \hat{\imath} \hat{\jmath} + 7\hat{k}$ and $\vec{b} = 5\hat{\imath} \hat{\jmath} + \lambda\hat{k}$, then find the value of λ so that the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal.

OR

Find the direction ratio and direction cosines of a line parallel to the line whose equations are

6x - 12 = 3v + 9 = 2z - 2

Q24. If $y\sqrt{1-x^2} + x\sqrt{1-y^2} = 1$, then prove that $\frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}$

Q25. Find $|\vec{x}|$ if $(\vec{x} - \vec{a})$. $(\vec{x} + \vec{a}) = 12$, where \vec{a} is a unit vector.

SECTION C

(This section comprises of short answer type questions (SA) of 3 marks each)

Q26. Find: $\int \frac{dx}{\sqrt{3-2x-x^2}}$

Q27. Three friends go for coffee. They decide who will pay the bill, by each tossing a coin and then letting the "odd person" pay. There is no odd person if all three tosses produce the same result. If there is no odd person in the first round, they make a second round of tosses and they continue to do so until there is an odd person. What is the probability that exactly three rounds of tosses are made?

OR

Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.

Q28. Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{tanx}}$

OR

Evaluate: $\int_0^4 |x-1| dx$

Q29. Solve the differential equation: $ydx + (x - y^2)dy = 0$

OR Solve the differential equation: $xdy - ydx = \sqrt{x^2 + y^2} dx$

Q30. Solve the following Linear Programming Problem graphically:

Maximize Z = 400x + 300y subject to $x + y \le 200, x \le 40, x \ge 20, y \ge 0$

Q31. Find $\int \frac{(x^3 + x + 1)}{(x^2 - 1)} dx$

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each)

- Q32. Make a rough sketch of the region { $(x, y): 0 \le y \le x^2, 0 \le y \le x, 0 \le x \le 2$ } and find the area of the region using integration.
- Q33. Define the relation R in the set $N \times N$ as follows: For (a, b), (c, d) $\in N \times N$, (a, b) R (c, d) iff ad = bc. Prove that R is an equivalence relation in $N \times N$.

Given a non-empty set X, define the relation R in P(X) as follows: For A, $B \in P(X)$, $(A, B) \in R$ iff $A \subset B$. Prove that R is reflexive, transitive and not symmetric.

Q34. An insect is crawling along the line $\bar{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} - 2\hat{j} + 2\hat{k})$ and another insect is crawling along the line $\bar{r} = -4\hat{i} - \hat{k} + \mu(3\hat{i} - 2\hat{j} - 2\hat{k})$. At what points on the lines should they reach so that the distance between them is the shortest? Find the shortest possible distance between them.

OR

The equations of motion of a rocket are:

x = 2t, y = -4t, z = 4t, where the time t is given in seconds, and the coordinates of a moving point in km. What is the path of the rocket? At what distances will the rocket be from the starting point O(0, 0, 0) and from the following line in 10 seconds? $\vec{r} = 20\hat{i} - 10\hat{j} + 40\hat{k} + \mu(10\hat{i} - 20\hat{j} + 10\hat{k})$

Q35. If A =
$$\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
, find A^{-1} . Use A^{-1} to solve the following system of equations
 $2x - 3y + 5z = 11, 3x + 2y - 4z = -5, x + y - 2z = -3$

SECTION E

(This section comprises of 3 case-study/passage-based questions of 4 marks each with two sub-parts. First two case study questions have three sub-parts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two sub-parts of 2 marks each.)

Q36. Case-Study 1: Read the following passage and answer the questions given below.

The temperature of a person during an intestinal illness is given by

 $f(x) = -0.1x^2 + mx + 98.6, 0 \le x \le 12$, m being a constant, where f(x) is the temperature in °F at x days.

- (i) Is the function differentiable in the interval (0, 12)? Justify your answer.
- (ii) If 6 is the critical point of the function, then find the value of the constant m.

(iii) Find the intervals in which the function is strictly increasing/strictly decreasing. OR

- Find the points of local maximum/local minimum, if any, in the interval (0, 12) as (iii) well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute maximum/absolute minimum values of the function.
- Q37. Case-Study 2: Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$

- (i) If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
- (ii) Find the critical point of the function.
- Use First derivative Test to find the length 2x and width 2y of the soccer field (in (iii) terms of a and b) that maximize its area.

OR

Use Second Derivative Test to find the length 2x and width 2y of the soccer field (iii) (in terms of a and b) that maximize its area.

Q38. Case-Study 3: Read the following passage and answer the questions given below.

There are two antiaircraft guns, named as A and B. The probabilities that the shell fired from them hits an airplane are 0.3 and 0.2 respectively. Both of them fired one shell at an airplane at the same time.

- (i) What is the probability that the shell fired from exactly one of them hit the plane?
- (ii) If it is known that the shell fired from exactly one of them hit the plane, then what is the probability that it was fired from B?

Marking Scheme Class XII Mathematics (Code – 041) Section : A (Multiple Choice Questions- 1 Mark each)

NoIn a skew-symmetric matrix, the (i, j)th element is negative of the (i, j)th element. Hence, the (i, j)th element = 02.(a) $ AA' = A A' = (-3)(-3) = 9$ 3.(b)The area of the parallelogram with adjacent sides AB and AC = $ \overline{AB} \times \overline{AC} $. Hence, the area of the triangle with vertices A, B, C $-\frac{1}{2} \overline{AB} \times \overline{AC} $ (c)The function f is continuous at $x = 0$ if $\lim_{x\to 0} f(x) = f(0)$ We have $f(0) = k$ and $\lim_{x\to 0} f(x) = f(0)$ We have $f(0) = k$ and $\lim_{x\to 0} f(x) = f(0)$ We have $f(0) = k$ and $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\sin^2 2x}{8x^2} = \lim_{x\to 0} \frac{\sin^2 2x}{4x^2}$ $-\lim_{x\to 0} (\frac{\sin 2x}{2x})^2 = 1$ Hence, $k = 1$ 5.(b) $\frac{x^2}{2} + \log x + C(\because f(x)) = \int (x + \frac{1}{x}) dx)$ 6.(c)The given differential equation is $4(\frac{dy}{dx})^3 \frac{d^2y}{dx^2} = 0$. Here, $m = 2$ and $n = 1$ Hence, $m + n = 3$ 7.(b)The strict inequality represents an open half plane and itcontains the origin as $(0, 0)$ satisfies it.8.(a)Scalar Projection of $31 - j - 2k$ on vector $i + 2j - 3k$ $-\frac{(3i - j - 2k)(i + 2j - 3k)}{[i + 2j - 3k]} = \frac{7}{\sqrt{14}}$ 9.(c) $\int_{2}^{2} \frac{x^2 + 1}{x^2 + 1} = \frac{1}{2}[\log(x^2 + 1)]_{2}^{2} = \frac{1}{2}(\log 10 - \log 5) = \frac{1}{2}\log(\frac{10}{5})$ $-\frac{1}{2}\log 2$ 10.(c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11.(d)The minimum value of the objective function occurs at two adjacent corner points $(0, 0, 1, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joning the two poi	Question	Answer	Hints/Solution
1the (j, j)th element. Hence, the (i, j)th element = 02.(a) $ AA' = A A' = (-3)(-3) = 9$ 3.(b)The area of the parallelogram with adjacent sides AB and AC = $ \overline{AB} \times \overline{AC} $. Hence, the area of the triangle with vertices A, B, C $=\frac{1}{2} \overline{AB} \times \overline{AC} $ 4.(c)The function f is continuous at $x = 0$ if $\lim_{x\to 0} f(x) = f(0)$ We have $f(0) = k$ and $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1-\cos}{8x^2} = \lim_{x\to 0} \frac{2\sin^2 2x}{8x^2} = \lim_{x\to 0} \frac{\sin^2 2x}{4x^2}$ $=\lim_{x\to 0} \left(\frac{\sin 2x}{2x}\right)^2 = 1$ Hence, $k = 1$ 5.(b) $\frac{x^2}{2} + \log x + C (\because f(x)) = \int (x + \frac{1}{x}) dx)$ 6.(c)The given differential equation is $4 \left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, $m = 2$ and $n = 1$ Hence, $m + n = 3$ 7.(b)The strict inequality represents an open half plane and itcontains the origin as $(0, 0)$ satisfies it.8.(a)Scalar Projection of $3\hat{i} - \hat{j} - 2\hat{k}$ on vector $\hat{i} + 2\hat{j} - 3\hat{k}$ $=\frac{(x-1)^{-2}k((1+2)-3k)}{(1+2)^{-2}k^2} = \frac{7}{\sqrt{14}}$ 9.(c) $\int_{2}^{3} \frac{x^2}{x^2+1} = \frac{1}{2}[log(x^2+1)]_{2}^{3} = \frac{1}{2}(log10 - log5) = \frac{1}{2}log\left(\frac{10}{5}\right)$ $=\frac{1}{2}log2$ 10.(c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11.(d)The minimum value of the objective function occurs at twoadjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point12.(d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$	No		
3. (b) The area of the parallelogram with adjacent sides AB and AC = $ \overline{AB} \times \overline{AC} $. Hence, the area of the triangle with vertices A, B, C $=\frac{1}{2} \overline{AB} \times \overline{AC} $ 4. (c) The function f is continuous at $x = 0$ if $\lim_{x \to 0} f(x) = f(0)$. We have $f(0) = k$ and $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1-\cos s}{8x^2} = \lim_{x \to 0} \frac{2\sin^2 2x}{8x^2} = \lim_{x \to 0} \frac{\sin^2 2x}{4x^2}$ $=\lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)^2 = 1$ Hence, $k = 1$ 5. (b) $\frac{x^2}{2} + \log x + C\left(\because f(x) = \int \left(x + \frac{1}{x}\right) dx\right)$ 6. (c) The given differential equation is $4\left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, $m = 2$ and $n = 1$ Hence, $m + n = 3$ 7. (b) The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it. 8. (a) Scalar Projection of $3I - j - 2\hat{k}$ on vector $\hat{i} + 2j - 3\hat{k}$ $= \frac{(3I - j - 2\hat{k})(1 + 2j - 3\hat{k})}{[1 + 2j - 3\hat{k}]} = \frac{7}{\sqrt{14}}$ 9. (c) $\int_{3^2} \frac{x}{x^{1+1}} = \frac{1}{2}[log(x^2 + 1)]_{2}^{2} = \frac{1}{2}(log10 - log5) = \frac{1}{2}log\left(\frac{10}{5}\right)$ $=\frac{1}{2}log2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points. 12. (d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + logK, K > 0 \Rightarrow log y = og x + logK$		(c)	
3. (b) The area of the parallelogram with adjacent sides AB and AC = $ \overline{AB} \times \overline{AC} $. Hence, the area of the triangle with vertices A, B, C $=\frac{1}{2} \overline{AB} \times \overline{AC} $. Hence, the area of the triangle with vertices A, B, C $=\frac{1}{2} \overline{AB} \times \overline{AC} $. Hence, the area of the triangle with vertices A, B, C $=\frac{1}{2} \overline{AB} \times \overline{AC} $. We have $f(0) = k$ and $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1-\cos x}{8x^2} = \lim_{x \to 0} \frac{2\sin^2 2x}{8x^2} = \lim_{x \to 0} \frac{\sin^2 2x}{4x^2}$ $=\lim_{x \to 0} (\frac{\sin 2x}{2x})^2 = 1$ Hence, $k = 1$ 5. (b) $\frac{x^2}{2} + \log x + C (\because f(x) = \int (x + \frac{1}{x}) dx)$ 6. (c) The given differential equation is $4 (\frac{dy}{dx})^3 \frac{d^2y}{dx^2} = 0$. Here, $m = 2$ and $n = 1$ Hence, $m + n = 3$ 7. (b) The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it. 8. (a) Scalar Projection of $31 - j - 2k$ on vector $i + 2j - 3k$ $= \frac{(3i - j - 2k)(1 + 2j - 3k)}{[i + 2j - 3k]} = \frac{7}{\sqrt{14}}$ 9. (c) $\int_{2}^{3} \frac{x}{x^2 + 1} = \frac{1}{2} [log(x^2 + 1)]_{2}^{3} = \frac{1}{2} (log 10 - log 5) = \frac{1}{2} log(\frac{10}{5})$ $= \frac{1}{2} log 2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points $(0, 6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points. 12. (d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm \sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	2.	(a)	AA' = A A' = (-3)(-3) = 9
$\frac{-\frac{1}{2}\left \overline{AB} \times \overline{AC}\right }{4.}$ (c) The function f is continuous at x = 0 if $\lim_{x \to 0} f(x) = f(0)$ We have f(0) = k and $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1-\cos}{8x^2} = \lim_{x \to 0} \frac{2\sin^2 2x}{8x^2} = \lim_{x \to 0} \frac{\sin^2 2x}{4x^2}$ $=\lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)^2 = 1$ Hence, k =1 5. (b) $\frac{x^2}{2} + \log x + C\left(\because f(x) = \int \left(x + \frac{1}{x}\right) dx\right)$ 6. (c) The given differential equation is $4\left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, m = 2 and n = 1 Hence, m + n= 3 7. (b) The strict inequality represents an open half plane and it contains the origin as (0, 0) satisfies it. 8. (a) Scalar Projection of $31 - f - 2k$ on vector $t + 2f - 3k$ $\frac{-(31-2k)(1+2)-3k}{[t+2)-3k]} = \frac{7}{\sqrt{14}}$ 9. (c) $\int_2^3 \frac{x}{x^2+1} = \frac{1}{2}[\log(x^2+1)]_2^3 = \frac{1}{2}(\log 10 - \log 5) = \frac{1}{2}\log\left(\frac{10}{5}\right)$ $= \frac{1}{2}\log 2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points (0, 6, 1, 6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points. 12. (d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	3.	(b)	The area of the parallelogram with adjacent sides AB and AC =
We have $f(0) = k$ and $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1-\cos}{8x^2} = \lim_{x\to 0} \frac{2\sin^2 2x}{8x^2} = \lim_{x\to 0} \frac{\sin^2 2x}{4x^2}$ $=\lim_{x\to 0} \left(\frac{\sin 2x}{2x}\right)^2 = 1$ Hence, $k = 1$ 5. (b) $\frac{x^2}{2} + \log x + C \left(\because f(x) = \int \left(x + \frac{1}{x}\right) dx\right)$ 6. (c) The given differential equation is $4 \left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, $m = 2$ and $n = 1$ Hence, $m + n = 3$ 7. (b) The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it. 8. (a) Scalar Projection of $3i - j - 2k$ on vector $i + 2j - 3k$ $= \frac{(3i - j - 2k)(i + 2j - 3k]}{[i + 2j - 3k]} = \frac{7}{\sqrt{14}}$ 9. (c) $\int_2^3 \frac{x}{x^2 + 1} = \frac{1}{2} [log(x^2 + 1)]_2^3 = \frac{1}{2} (log 10 - log 5) = \frac{1}{2} log(\frac{10}{5})$ $= \frac{1}{2} log 2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points $(0, 6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points. 12. (d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			$ \overrightarrow{AB} \times \overrightarrow{AC} $. Hence, the area of the triangle with vertices A, B, C = $\frac{1}{2} \overrightarrow{AB} \times \overrightarrow{AC} $
$= \lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)^2 = 1$ Hence, k =1 $5. \qquad (b) \qquad \frac{x^2}{2} + \log x + C \left(\because f(x) = \int \left(x + \frac{1}{x}\right) dx\right)$ $6. \qquad (c) \qquad \text{The given differential equation is } 4 \left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0. \text{ Here, m } = 2$ and n = 1 Hence, m + n= 3 $7. \qquad (b) \qquad \text{The strict inequality represents an open half plane and it contains the origin as (0, 0) satisfies it. 8. \qquad (a) \qquad \text{Scalar Projection of } 3\hat{\iota} - \hat{\jmath} - 2\hat{k} \text{ on vector } \hat{\iota} + 2\hat{\jmath} - 3\hat{k} = \frac{(3\iota - j - 2\hat{k})(\iota + 2j - 3\hat{k})}{[\iota + 2j - 3\hat{k}]} = \frac{7}{\sqrt{14}} 9. \qquad (c) \qquad \int_{2}^{3} \frac{x^2}{x^2 + 1} = \frac{1}{2}[\log(x^2 + 1)]_{2}^{3} = \frac{1}{2}(\log 10 - \log 5) = \frac{1}{2}\log\left(\frac{10}{5}\right) = \frac{1}{2}\log 2 10. \qquad (c) \qquad (AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1} 11. \qquad (d) \qquad \text{The minimum value of the objective function occurs at two adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane 4x + 6y < 12 in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points. 12. \qquad (d) \qquad 2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3} 13. \qquad (b) \qquad adjA = A ^{n-1} \Rightarrow adjA = 25 14. \qquad (c) \qquad P(A' \cap B') = P(A') \times P(B') \text{ (As A and B are independent,} A' and B' are also independent.) = 0.7 \times 0.4 = 0.28 15. \qquad (c) \qquad ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x} \Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	4.	(c)	We have $f(0) = k$ and
Hence, k = 15.(b) $\frac{x^2}{2} + \log x + C \left(\because f(x) = \int \left(x + \frac{1}{x}\right) dx\right)$ 6.(c)The given differential equation is $4 \left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, m = 2 and n = 1 Hence, m + n = 37.(b)The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it.8.(a)Scalar Projection of $3\hat{t} - \hat{j} - 2\hat{k}$ on vector $\hat{t} + 2\hat{j} - 3\hat{k}$ $= \frac{-(3\hat{t} - 2\hat{k})(t+2j-3\hat{k})}{ t+2j-3\hat{k} } = \frac{7}{\sqrt{14}}$ 9.(c) $\int_2^3 \frac{x}{x^2+1} = \frac{1}{2} [log(x^2+1)]_2^3 = \frac{1}{2} (log10 - log5) = \frac{1}{2} log \left(\frac{10}{5}\right)$ $= \frac{1}{2} log2$ 10.(c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11.(d)The minimum value of the objective function occurs at two adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points.12.(d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13.(b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14.(c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15.(c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			
5. (b) $\frac{x^2}{2} + \log x + C \left(\because f(x) = \int \left(x + \frac{1}{x}\right) dx \right)$ 6. (c) The given differential equation is $4 \left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, m = 2 and n = 1 Hence, m + n = 3 7. (b) The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it. 8. (a) Scalar Projection of $3\hat{i} - \hat{j} - 2\hat{k}$ on vector $\hat{i} + 2\hat{j} - 3\hat{k}$ $= \frac{(3\hat{i} - j - 2\hat{k})(\hat{i} + 2\hat{j} - 3\hat{k})}{ \hat{i} + 2\hat{j} - 3\hat{k} } = \frac{7}{\sqrt{14}}$ 9. (c) $\int_2^3 \frac{x^2 + 1}{x^2 + 1} = \frac{1}{2} [log(x^2 + 1)]_2^3 = \frac{1}{2} (log10 - log5) = \frac{1}{2} log\left(\frac{10}{5}\right)$ $= \frac{1}{2} log2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points. 12. (d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + logK, K > 0 \Rightarrow log y = log x + logK$			
Internet in the network of the segment joining the two points.7.(b)The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it.8.(a)Scalar Projection of $3\hat{i} - \hat{j} - 2\hat{k}$ on vector $\hat{i} + 2\hat{j} - 3\hat{k}$ $= \frac{(3\hat{i} - j - 2\hat{k})(\hat{i} + 2j - 3\hat{k})}{ \hat{i} + 2j - 3\hat{k} } = \frac{7}{\sqrt{14}}$ 9.(c) $\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2} [log(x^{2} + 1)]_{2}^{3} = \frac{1}{2} (log10 - log5) = \frac{1}{2} log(\frac{10}{5})$ $= \frac{1}{2} log2$ 10.(c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11.(d)The minimum value of the objective function occurs at two adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joining the two points.12.(d) $2 - 20 = 2x^{2} - 24 \Rightarrow 2x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm\sqrt{3}$ 13.(b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14.(c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15.(c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	5	(b)	r^2 ((1))
Internet in the network of the segment joining the two points.7.(b)The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it.8.(a)Scalar Projection of $3\hat{i} - \hat{j} - 2\hat{k}$ on vector $\hat{i} + 2\hat{j} - 3\hat{k}$ $= \frac{(3\hat{i} - j - 2\hat{k})(\hat{i} + 2j - 3\hat{k})}{ \hat{i} + 2j - 3\hat{k} } = \frac{7}{\sqrt{14}}$ 9.(c) $\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2} [log(x^{2} + 1)]_{2}^{3} = \frac{1}{2} (log10 - log5) = \frac{1}{2} log(\frac{10}{5})$ $= \frac{1}{2} log2$ 10.(c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11.(d)The minimum value of the objective function occurs at two adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joining the two points.12.(d) $2 - 20 = 2x^{2} - 24 \Rightarrow 2x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm\sqrt{3}$ 13.(b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14.(c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15.(c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			$\frac{x}{2} + \log x + C\left(\because f(x) = \int \left(x + \frac{1}{x}\right) dx\right)$
Internet in the network of the segment joining the two points.7.(b)The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it.8.(a)Scalar Projection of $3\hat{i} - \hat{j} - 2\hat{k}$ on vector $\hat{i} + 2\hat{j} - 3\hat{k}$ $= \frac{(3\hat{i} - j - 2\hat{k})(\hat{i} + 2j - 3\hat{k})}{ \hat{i} + 2j - 3\hat{k} } = \frac{7}{\sqrt{14}}$ 9.(c) $\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2} [log(x^{2} + 1)]_{2}^{3} = \frac{1}{2} (log10 - log5) = \frac{1}{2} log(\frac{10}{5})$ $= \frac{1}{2} log2$ 10.(c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11.(d)The minimum value of the objective function occurs at two adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joining the two points.12.(d) $2 - 20 = 2x^{2} - 24 \Rightarrow 2x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm\sqrt{3}$ 13.(b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14.(c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15.(c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	6.	(c)	The given differential equation is $4\left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, m = 2
7.(b)The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it.8.(a)Scalar Projection of $3\hat{i} - \hat{j} - 2\hat{k}$ on vector $\hat{i} + 2\hat{j} - 3\hat{k}$ $=\frac{(3i-j-2\hat{k}).(i+2j-3\hat{k})}{ i+2j-3\hat{k} } = \frac{7}{\sqrt{14}}$ 9.(c) $\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2} [log(x^{2}+1)]_{2}^{3} = \frac{1}{2} (log10 - log5) = \frac{1}{2} log(\frac{10}{5})$ $= \frac{1}{2} log2$ 10.(c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11.(d)The minimum value of the objective function occurs at two adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points.12.(d) $2 - 20 = 2x^{2} - 24 \Rightarrow 2x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm\sqrt{3}$ 13.(b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14.(c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15.(c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			and $n = 1$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Hence, $m + n = 3$
8. (a) Scalar Projection of $3\hat{\iota} - \hat{j} - 2\hat{k}$ on vector $\hat{\iota} + 2\hat{j} - 3\hat{k}$ $=\frac{(3\hat{\iota} - j - 2\hat{k}).(\hat{\iota} + 2j - 3\hat{k})}{ \hat{\iota} + 2j - 3\hat{k} } = \frac{7}{\sqrt{14}}$ 9. (c) $\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2}[log(x^{2}+1)]_{2}^{3} = \frac{1}{2}(log10 - log5) = \frac{1}{2}log(\frac{10}{5})$ $=\frac{1}{2}log2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joining the two points. 12. (d) $2 - 20 = 2x^{2} - 24 \Rightarrow 2x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + logK, K > 0 \Rightarrow log y = log x + logK$	7.	(b)	The strict inequality represents an open half plane and it
$\frac{=\frac{(3i-j-2\hat{k})\cdot(i+2j-3\hat{k})}{ i+2j-3\hat{k} } = \frac{7}{\sqrt{14}}}{9}$ 9. (c) $\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2}[log(x^{2}+1)]_{2}^{3} = \frac{1}{2}(log10 - log5) = \frac{1}{2}log\left(\frac{10}{5}\right)$ $= \frac{1}{2}log2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joining the two points. 12. (d) $2 - 20 = 2x^{2} - 24 \Rightarrow 2x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + logK, K > 0 \Rightarrow log y = log x + logK$			contains the origin as $(0, 0)$ satisfies it.
9. (c) $\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2} [log(x^{2}+1)]_{2}^{3} = \frac{1}{2} (log10 - log5) = \frac{1}{2} log(\frac{10}{5})$ $= \frac{1}{2} log2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joining the two points. 12. (d) $2 - 20 = 2x^{2} - 24 \Rightarrow 2x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, $A' and B'$ are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + logK, K > 0 \Rightarrow log y = log x + logK$	8.	(a)	Scalar Projection of $3\hat{\imath} - \hat{\jmath} - 2\hat{k}$ on vector $\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$
9. (c) $\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2} [log(x^{2}+1)]_{2}^{3} = \frac{1}{2} (log10 - log5) = \frac{1}{2} log(\frac{10}{5})$ $= \frac{1}{2} log2$ 10. (c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11. (d) The minimum value of the objective function occurs at two adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line-segment joining the two points. 12. (d) $2 - 20 = 2x^{2} - 24 \Rightarrow 2x^{2} = 6 \Rightarrow x^{2} = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, $A' and B'$ are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + logK, K > 0 \Rightarrow log y = log x + logK$			$=\frac{(3\hat{\iota}-\hat{\jmath}-2\hat{k}).(\hat{\iota}+2\hat{\jmath}-3\hat{k})}{1-\hat{\iota}-\hat{\iota}-\hat{\iota}-\hat{\iota}-\hat{\iota}-\hat{\iota}-\hat{\iota}-\hat{\iota}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	(2)	
10.(c) $(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$ 11.(d)The minimum value of the objective function occurs at two adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points.12.(d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13.(b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14.(c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, $A' and B'$ are also independent.) $= 0.7 \times 0.4 = 0.28$ 15.(c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	9.		
11. (d) The minimum value of the objective function occurs at two adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points. 12. (d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	10.	(c)	$(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$
adjacent corner points (0.6, 1.6) and (3, 0) and there is no point in the half plane $4x + 6y < 12$ in common with the feasible region. So, the minimum value occurs at every point of the line- segment joining the two points.12.(d) $2 - 20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13.(b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14.(c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, $A' and B'$ are also independent.) $= 0.7 \times 0.4 = 0.28$ 15.(c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			The minimum value of the objective function occurs at two
region. So, the minimum value occurs at every point of the line- segment joining the two points.12.(d) $2-20 = 2x^2 - 24 \Rightarrow 2x^2 = 6 \Rightarrow x^2 = 3 \Rightarrow x = \pm\sqrt{3}$ 13.(b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14.(c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, $A' and B'$ are also independent.) $= 0.7 \times 0.4 = 0.28$ 15.(c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point
12. (d) 12. (d) 13. (e) 14. (c) 15. (c) 15. (c) 16. (d) 17. (d) 17. (d) 18. (e) 19. (f) 19. (f) 19			region. So, the minimum value occurs at every point of the line-
13. (b) $ adjA = A ^{n-1} \Rightarrow adjA = 25$ 14. (c) $P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are also independent.) $= 0.7 \times 0.4 = 0.28$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			segment joining the two points.
$\begin{array}{c c} A' and B' \text{ are also independent.} \\ &= 0.7 \times 0.4 = 0.28 \end{array}$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	12.	(d)	$2 - 20 = 2x^2 - 24 \implies 2x^2 = 6 \implies x^2 = 3 \implies x = \pm \sqrt{3}$
$\begin{array}{c c} A' and B' \text{ are also independent.} \\ &= 0.7 \times 0.4 = 0.28 \end{array}$ 15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			$ adjA = A ^{n-1} \Longrightarrow adjA = 25$
15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$	14.	(c)	
15. (c) $ydx - xdy = 0 \Rightarrow ydx - xdy = 0 \Rightarrow \frac{dy}{y} = \frac{dx}{x}$ $\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$			1 <i>7</i>
$\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$ $\Rightarrow \log y = \log x K \Rightarrow y = x K \Rightarrow y = Kx \Rightarrow y = Cx$	15.	(c)	$ydx - xdy = 0 \implies ydx - xdy = 0 \implies \frac{dy}{y} = \frac{dx}{x}$
$\Rightarrow \log v = \log x K \Rightarrow v = x K \Rightarrow v = Kx \Rightarrow v = Cx$			$\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$
			$\Rightarrow \log y = \log x K \Rightarrow y = x K \Rightarrow y = \pm Kx \Rightarrow y = Cx$

16		• -]	1			
16.	(a)	$y = \sin^{-1}x$				
		$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \Longrightarrow \sqrt{1 - x^2} \cdot \frac{dy}{dx} = 1$				
		Again, differentiating both sides w. r. to x, we get				
		$\sqrt{1 - x^2} \frac{d^2 y}{dx^2} + \frac{dy}{dx} \cdot \left(\frac{-2x}{2\sqrt{1 - x^2}}\right) = 0$				
		Simplifying, we get $(1 - x^2)y_2 = xy_1$				
17.	(b)	$\left \vec{a} - 2\vec{b} \right ^2 = (\vec{a} - 2\vec{b}).(\vec{a} - 2\vec{b})$				
		$\left \vec{a} - 2\vec{b} \right ^2 = \vec{a} \cdot \vec{a} - 4\vec{a} \cdot \vec{b} + 4\vec{b} \cdot \vec{b}$				
		$= \vec{a} ^2 - 4\vec{a}.\vec{b} + 4 \vec{b} ^2$				
		=4-16+36=24				
		$\begin{vmatrix} \vec{a} - 2\vec{b} \end{vmatrix}^2 = 24 \implies \vec{a} - 2\vec{b} = 2\sqrt{6}$ The line through the points (0, 5, -2) and (3, -1, 2) is				
18.	(b)					
		$\frac{x}{3-0} = \frac{y-5}{-1-5} = \frac{z+2}{2+2}$				
		$or, \frac{x}{3} = \frac{y-5}{-6} = \frac{z+2}{4}$				
		Any point on the line is $(3k, -6k + 5, 4k - 2)$, where k	is an			
		arbitrary scalar.	15 all			
		$3k = 6 \implies k = 2$				
10		The z-coordinate of the point P will be $4 \times 2 - 2 = 6$.11.1			
19.	(c)	$sec^{-1}x$ is defined if $x \le -1$ or $x \ge 1$. Hence, $sec^{-1}2x$	will be			
		defined if $x \le -\frac{1}{2}$ or $x \ge \frac{1}{2}$.				
		Hence, A is true. The range of the function $aac^{-1}r$ is $[0, \pi] = {\pi \choose 2}$				
		The range of the function $\sec^{-1}x$ is $[0, \pi] - \{\frac{\pi}{2}\}$ R is false.				
20.	(a)	The equation of the x-axis may be written as $\vec{r} = t\hat{i}$. He	ence, the			
		acute angle θ between the given line and the x-axis is given line and the x-axis is given by the transformation of transformation of the transformation of transformation of the transformation of transformation of tran	iven by			
		$\cos\theta = \frac{ 1 \times 1 + (-1) \times 0 + 0 \times 0 }{\sqrt{1^2 + (-1)^2 + 0^2} \times \sqrt{1^2 + 0^2 + 0^2}} = \frac{1}{\sqrt{2}} \Longrightarrow$	$\theta = \frac{\pi}{2}$			
		$\sqrt{1^2 + (-1)^2 + 0^2} \times \sqrt{1^2 + 0^2 + 0^2} \sqrt{2}$	4			
		ECTION B (VSA questions of 2 marks each)				
21.			.1			
		$n\left(\frac{13\pi}{7}\right)] = \sin^{-1}\left[\sin\left(2\pi - \frac{\pi}{7}\right)\right]$				
	$= sin^{-1}[$	$\sin\left(-\frac{\pi}{7}\right)] = -\frac{\pi}{7}$	1			
	T .					
	-	Let $y \in N(\text{codomain})$. Then $\exists 2y \in N(\text{domain})$ such that				
		$f(2y) = \frac{2y}{2} = y$. Hence, f is surjective.				
		(domain) such that $f(1) = 1 = f(2)$ f is not injective.	1			
22.		epresent the height of the street light from the ground. At				
	any time	t seconds, let the man represented as ED of height 1.6 m				
		stance of x m from AB and the length of his shadow EC				
	be y m.	milarity of triangles, we have $\frac{4}{1.6} = \frac{x+y}{y} \Rightarrow 3y = 2x$	1/2			
	Come on	$\frac{1.6}{y} = \frac{y}{2x}$				

	Differentiating both sides w.r.to t, we get $3\frac{dy}{dt} = 2\frac{dx}{dt}$ $\frac{dy}{dt} = \frac{2}{3} \times 0.3 \Rightarrow \frac{dy}{dt} = 0.2$ At any time t seconds, the tip of his shadow is at a distance of $(x + y)$ m from AB. The rate at which the tip of his shadow moving	1⁄2
	$= \left(\frac{dx}{dt} + \frac{dy}{dt}\right)m/s = 0.5 m/s$ The rate at which his shadow is lengthening	1/2
	$=\frac{dy}{dt}m/s=0.2m/s$	1/2
23.	$= \frac{dy}{dt} m/s = 0.2 m/s$ $\vec{a} = \hat{\imath} - \hat{\jmath} + 7\hat{k} \text{ and } \vec{b} = 5\hat{\imath} - \hat{\jmath} + \lambda\hat{k}$ Hence $\vec{a} + \vec{b} = 6\hat{\imath} - 2\hat{\jmath} + (7 + \lambda)\hat{k}$ and $\vec{a} - \vec{b} = -4\hat{\imath} + (7 - \lambda)\hat{k}$	1/2
	$\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ will be orthogonal if, $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$ i.e., if, $-24 + (49 - \lambda^2) = 0 \Longrightarrow \lambda^2 = 25$	1/2
	i.e., if, $\lambda = \pm 5$	1
	OR The equations of the line are $6x - 12 = 3y + 9 = 2z - 2$, which, when written in standard symmetric form, will be $\frac{x-2}{\frac{1}{2}} = \frac{y-(-3)}{\frac{1}{2}} = \frac{z-1}{\frac{1}{2}}$	1/2
	Since, lines are parallel, we have $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ Hence, the required direction ratios are $(\frac{1}{6}, \frac{1}{3}, \frac{1}{2})$ or (1,2,3) and the required direction cosines are $(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}})$	1/2 1
24.	$y\sqrt{1-x^2} + x\sqrt{1-y^2} = 1$ Let $sin^{-1}x = A$ and $sin^{-1}y = B$. Then $x = sinA$ and $y = sinB$ $y\sqrt{1-x^2} + x\sqrt{1-y^2} = 1 \implies sinBcosA + sinAcosB = 1$	1/2
	$\Rightarrow \sin(A+B) = 1 \Rightarrow A+B = \sin^{-1}1 = \frac{\pi}{2}$ $\Rightarrow \sin^{-1}x + \sin^{-1}x = \frac{\pi}{2}$	
	$\Rightarrow \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2}$	1/2
	Differentiating w.r.to x, we obtain $\frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}$	1
25.	Since \vec{a} is a unit vector, $\therefore \vec{a} = 1$	1/2

$(\vec{x} - \vec{a}).(\vec{x} + \vec{a}) = 12.$			
$\Rightarrow \vec{x}.\vec{x} + \vec{x}.\vec{a} - \vec{a}.\vec{x} - \vec{a}.\vec{a} = 12$	1/2		
$\Rightarrow \vec{x} ^2 - \vec{a} ^2 = 12.$ $\Rightarrow \vec{x} ^2 - 1 = 12$	1/2		
$\Rightarrow x ^2 - 1 = 12$ $\Rightarrow \vec{x} ^2 = 13 \Rightarrow \vec{x} = \sqrt{13}$	1/2		
SECTION C			

(Short Answer Questions of 3 Marks each)

		1	
26.	$\int \frac{dx}{\sqrt{3 - 2x - x^2}}$		
	$= \int \frac{dx}{\sqrt{-(x^2+2x-3)}} = \int \frac{dx}{\sqrt{4-(x+1)^2}}$	2	
	$= \sin^{-1}\left(\frac{x+1}{2}\right) + C \left[\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C\right]$	1	
27.	P(not obtaining an odd person in a single round) = P(All three of them throw tails or All three of them throw heads) $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times 2 = \frac{1}{4}$ P(obtaining an odd person in a single round)	1+1/2	
	= 1 - P(not obtaining an odd person in a single round) = $\frac{3}{4}$ The required probability	1/2	
	= P('In first round there is no odd person' and 'In second round there is no odd person' and 'In third round there is an odd person')		
	$= \frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{3}{64}$	1	
	OR Let X denote the Random Variable defined by the number of defective items.		
	$P(X=0) = \frac{4}{6} \times \frac{3}{5} = \frac{2}{5}$		
	$P(X=1) = 2 \times \left(\frac{2}{6} \times \frac{4}{5}\right) = \frac{8}{15}$		
	$P(X=2) = \frac{2}{6} \times \frac{1}{5} = \frac{1}{15}$	2	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	Mean = $\sum p_i x_i = \frac{10}{15} = \frac{2}{3}$	1/2	
28.	Mean = $\sum p_i x_i = \frac{10}{15} = \frac{2}{3}$ Let I = $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{tanx}} = \int_{\pi/6}^{\pi/3} \frac{\sqrt{cosx}}{\sqrt{sinx} + \sqrt{cosx}} dx$ (i)		

Using
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos(\frac{\pi}{6} + \frac{\pi}{2} - x)}}{\sqrt{\sin(\frac{\pi}{6} + \frac{\pi}{2} - x)}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx . (ii).$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/3}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{2}} dx$$

$$I = \int_{\pi/3}^{\pi/3} \frac{dx}{1 + \sqrt{2}}$$

	-			
	$v + x \frac{dv}{dx} = \sqrt{1 + v^2} + v^2$	v	1/2	
	dx Separating variables, we get			
	dv dx	eget	1/2	
	$\frac{dv}{\sqrt{1+v^2}} = \frac{dx}{x}$		/2	
		$ v + \sqrt{1 + v^2} = \log x + \log K, K > 0$		
	$\log \left y + \sqrt{x^2 + y^2} \right =$	logx ² K		
	$\Rightarrow y + \sqrt{x^2 + y^2} = \pm h$			
	· · ·			
	$\Rightarrow y + \sqrt{x^2 + y^2} = Cx$	² , which is the required general solution	1+1/2	
20	$W_{2} = \frac{7}{400} + 200$	ry only of to		
30.	We have $Z = 400x + 300$	• •		
	$x + y \le 200, x \le 40, x$ The corner points of the			
	-	e feasible region are $C(20,0)$, $D(40,0)$,		
	B(40,160), A(20,180)			
		↑		
		x = 40		
	×	$+ y = 200 x = A^{2} (20, 180)$		
		B = (40, 160)		
		B = (40, 100)		
		100		
		C = (20, 0) D = (40, 0) x		
	-200 -1	0 0 100 200		
		-100	1	
		-100		
			_	
	Corner Point	$\mathbf{Z} = 400\mathbf{x} + 300\mathbf{y}$		
	C(20,0)	8000	4	
	D(40,0)	16000		
	B(40,160)	64000		
	A(20,180)	62000] 1	
	Maximum profit occur	•	1	
21	and the maximum prof $(r^3 + r + 1)$		-	
31.	$\int \frac{(x^3+x+1)}{(x^2-1)} dx = \int \left(x + \frac{1}{x^2}\right) dx$	$\frac{2x+1}{(x-1)(x+1)}dx$	1	
	now resolving $\frac{1}{(x-1)(x+1)}$	$\frac{1}{1}$ into partial fractions as		
		D		
	$\frac{2x+1}{(x-1)(x+1)} = \frac{A}{x-1}$	<u> </u>		
	$(x-1)(x+1)^{-}x-$	1 + x + 1		
	We get $\frac{2x+1}{(x-1)(x+1)} = \frac{1}{2}$	$\frac{3}{2(n-4)} + \frac{1}{2(n+4)}$	1	
	(x-1)(x+1)	2(x-1) = 2(x+1)		
1	1			

Hence,
$$\int \frac{(x^3 + x + 1)}{(x^2 - 1)} dx = \int \left(x + \frac{2x + 1}{(x - 1)(x + 1)} \right) dx$$
$$= \int \left(x + \frac{3}{2(x - 1)} + \frac{1}{2(x + 1)} \right) dx$$
$$= \frac{x^2}{2} + \frac{3}{2} \log|x - 1| + \frac{1}{2} \log|x + 1| + C$$
$$= \frac{x^2}{2} + \frac{1}{2} (\log|(x - 1)^3(x + 1)| + C)$$

SECTION D (Long answer type questions (LA) of 5 marks each)

	(a, b) R (c, d) and (c, d) R (e, f).	
	Then $ad = bc$, $cf = de$	
	$\Rightarrow adcf = bcde$	
	$\Rightarrow af = be$	
	\Rightarrow (a, b)R(e, f)	
	Hence, R is transitive.	2
	Since, R is reflexive, symmetric and transitive, R is an	
	equivalence relation on $N \times N$.	1/2
	OR	
	Let $A \in P(X)$. Then $A \subset A$	
	$\Rightarrow (A, A) \in R$	
		1
	Hence, R is reflexive.	1
	Let $A, B, C \in P(X)$ such that	
	$(A,B),(B,C)\in R$	
	$\Rightarrow A \subset B, B \subset C$	
	$\Rightarrow A \subset C$	
	\Rightarrow (A, C) \in R	
	Hence, R is transitive.	2
	$\emptyset, X \in P(X)$ such that $\emptyset \subset X$. Hence, $(\emptyset, X) \in R$. But, $X \not\subset \emptyset$,	
	which implies that $(X, \emptyset) \notin R$.	
	Thus, R is not symmetric.	2
34.	The given lines are non-parallel lines. There is a unique line-	
54.		
	segment PQ (P lying on one and Q on the other, which is at right	
	angles to both the lines. PQ is the shortest distance between the	
	lines. Hence, the shortest possible distance between the insects =	
	PQ	
	The position vector of P lying on the line	
	$\vec{r} = 6\hat{\imath} + 2\hat{\jmath} + 2\hat{k} + \lambda(\hat{\imath} - 2\hat{\jmath} + 2\hat{k})$	
	is $(6 + \lambda)\hat{\imath} + (2 - 2\lambda)\hat{\jmath} + (2 + 2\lambda)\hat{k}$ for some λ	1/2
	The position vector of Q lying on the line	
	$\vec{r} = -4\hat{\imath} - \hat{k} + \mu(3\hat{\imath} - 2\hat{\jmath} - 2\hat{k})$	
		1/2
	is $(-4 + 3\mu)\hat{\imath} + (-2\mu)\hat{\jmath} + (-1 - 2\mu)\hat{k}$ for some μ	
	$\overrightarrow{PQ} = (-10 + 3\mu - \lambda)\hat{i} + (-2\mu - 2 + 2\lambda)\hat{j} + (-3 - 2\mu - 2\lambda)\hat{k}$	1/2
	Since, PQ is perpendicular to both the lines	
	$(-10 + 3\mu - \lambda) + (-2\mu - 2 + 2\lambda)(-2) + (-3 - 2\mu - 2\lambda)2$	
	= 0,	1/2
	$i.e., \mu - 3\lambda = 4$ (i)	
	and $(-10 + 3\mu - \lambda)3 + (-2\mu - 2 + 2\lambda)(-2) + (-3 - 2\mu - 2\mu)(-2)$	
	$2\lambda(-2) = 0,$	1/2
	$i.e., 17\mu - 3\lambda = 20$ (ii)	72
	solving (i) and (ii) for λ and μ , we get $\mu = 1, \lambda = -1$.	1
		1
	The position vector of the points, at which they should be so that	
	the distance between them is the shortest, are	
	$5\hat{\imath} + 4\hat{\jmath}$ and $-\hat{\imath} - 2\hat{\jmath} - 3\hat{k}$	1/2
	$\overrightarrow{PQ} = -6\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$	
	The shortest distance = $ \overrightarrow{PQ} = \sqrt{6^2 + 6^2 + 3^2} = 9$	1
	$\frac{1}{ V } = \frac{1}{ V } = \frac{1}{ V } = \frac{1}{ V } = \frac{1}{ V }$	
	UK	
		•

	Eliminating t between the equations, we obtain the equation of the	
	path $\frac{x}{2} = \frac{y}{-4} = \frac{z}{4}$, which are the equations of the line passing	
	through the origin having direction ratios <2, -4, 4>. This line is the path of the rocket.	1
	When $t = 10$ seconds, the rocket will be at the point (20, -40, 40). Hence, the required distance from the origin at 10 seconds =	1/2
	$\sqrt{20^2 + 40^2 + 40^2} km = 20 \times 3 km = 60 km$ The distance of the point (20, -40, 40) from the given line	1
	$=\frac{ (\vec{a_2}-\vec{a_1})\times\vec{b} }{ \vec{b} } = \frac{ -30\hat{j}\times(10\hat{i}-20\hat{j}+10\hat{k}) }{ 10\hat{i}-20\hat{j}+10\hat{k} } \ km = \frac{ -300\hat{i}+300\hat{k} }{ 10\hat{i}-20\hat{j}+10\hat{k} } \ km$	2
	$=\frac{300\sqrt{2}}{10\sqrt{6}} km = 10\sqrt{3} km$	1/2
35.	$=\frac{300\sqrt{2}}{10\sqrt{6}} km = 10\sqrt{3} km$ $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$ $ A = 2(0) + 3(-2) + 5(1) = -1$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}, A^{-1} = \frac{1}{(-1)} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}$ $X = A^{-1}B \Longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{(-1)} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$ $= \frac{1}{(-1)} \begin{bmatrix} 0 + 5 - 6 \\ 22 + 45 - 69 \\ 11 + 25 - 39 \end{bmatrix}$ $\Longrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{(-1)} \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix} \Longrightarrow x = 1, y = 2, z = 3.$	¹ / ₂ 3 1+1/2
1		

SECTION E(Case Studies/Passage based questions of 4 Marks each)

36.	(i) $f(x) = -0.1x^2 + mx + 9$	8.6, being a	polynomial function, is different	ntiable	
	everywhere, hence, differentia	able in (0, 12	2)	1	
	(ii)f'(x) = -0.2x + m				
	Since, 6 is the critical point,				
	$f'(6) = 0 \Longrightarrow m = 1.2$			1	
	(iii) $f(x) = -0.1x^2 + 1.2x + 1.2x$	- 98.6			
	f'(x) = -0.2x + 1.2 = -0.2(x - 6)				
	In the Interval	f'(x)	Conclusion		
	(0, 6)	+ve	f is strictly increasing		
			: [0, <i>C</i>]		
			in [0, 6]		
	(6, 12)	-ve	f is strictly decreasing	1+1	

	L	
	(iii) $A = 2x \times 2 \frac{b}{a} \sqrt{a^2 - x^2}, x \in (0, a).$	
	Squaring both sides, we get	
	$Z = A^{2} = \frac{16b^{2}}{a^{2}}x^{2}(a^{2} - x^{2}) = \frac{16b^{2}}{a^{2}}(x^{2}a^{2} - x^{4}), x \in (0, a).$	
	A is maximum when Z is maximum.	
	$\frac{dZ}{dx} = \frac{16b^2}{a^2} (2xa^2 - 4x^3) = \frac{32b^2}{a^2} x (a + \sqrt{2}x)(a - \sqrt{2}x)$	
	$\frac{dx}{dx} = \frac{1}{a^2} (2xa^2 - 4x^2) = \frac{1}{a^2} x(a + \sqrt{2x})(a - \sqrt{2x})$	
	$\frac{dZ}{dx} = 0 \Rightarrow x = \frac{a}{\sqrt{2}}.$	
	$\frac{d^2 Z}{dx^2} = \frac{32b^2}{a^2} (a^2 - 6x^2)$	
	$\left(\frac{d^2 Z}{dx^2}\right)_{x=\frac{a}{\sqrt{2}}} = \frac{32b^2}{a^2}(a^2 - 3a^2) = -64b^2 < 0$	
		1
	Hence, by the second derivative test, there is a local maximum value of Z at the a^{a}	
	critical point $x = \frac{a}{\sqrt{2}}$. Since there is only one critical point, therefore, Z is	1/2
	maximum at $x = \frac{a}{\sqrt{2}}$, hence, A is maximum at $x = \frac{a}{\sqrt{2}}$.	
	Thus, for maximum area of the soccer field, its length should be $a\sqrt{2}$ and its width	
	should be $b\sqrt{2}$.	1/2
38.	(i)Let P be the event that the shell fired from A hits the plane and Q be the event	
	that the shell fired from B hits the plane. The following four hypotheses are	
	possible before the trial, with the guns operating independently: $E_1 = PQ, E_2 = \overline{P}\overline{Q}, E_3 = \overline{P}Q, E_4 = P\overline{Q}$	
	Let $E =$ The shell fired from exactly one of them hits the plane.	
	$P(E_1) = 0.3 \times 0.2 = 0.06, P(E_2) = 0.7 \times 0.8 = 0.56, P(E_3) = 0.7 \times 0.2$	
	$= 0.14, P(E_4) = 0.3 \times 0.8 = 0.24$	
	$P\left(\frac{E}{E_1}\right) = 0, P\left(\frac{E}{E_2}\right) = 0, P\left(\frac{E}{E_3}\right) = 1, P\left(\frac{E}{E_4}\right) = 1$	1
	$P(E) = P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right) + P(E_3) \cdot P\left(\frac{E}{E_2}\right) + P(E_4) \cdot P\left(\frac{E}{E_4}\right)$	
	= 0.14 + 0.24 = 0.38	1
	$P(E_0) P(\frac{E}{E_0})$	
	(ii)By Bayes' Theorem, $P\left(\frac{E_3}{E}\right) = \frac{P(E_3).P\left(\frac{E}{E_3}\right)}{P(E_1).P\left(\frac{E}{E_1}\right) + P(E_2).P\left(\frac{E}{E_2}\right) + P(E_3).P\left(\frac{E}{E_3}\right) + P(E_4).P\left(\frac{E}{E_4}\right)}$	
	$(E_1)^{(2)} (E_1)^{(1)} (E_2)^{(1)} (E_3)^{(1)} (E_3)^{(1)} (E_4)^{(2)} (E_4)$	
	0.14 7	2
	$=\frac{0.14}{0.38}=\frac{7}{19}$	
	NOTE. The four hypertheses forms the martition of the second second it.	
	NOTE: The four hypotheses form the partition of the sample space and it can be seen that the sum of their probabilities is 1. The hypotheses E_1 and E_2 are actually	
	eliminated as $P\left(\frac{E}{E_1}\right) = P\left(\frac{E}{E_2}\right) = 0$	
	Alternative way of writing the solution: (i)P(Shell fired from exactly one of them hits the plane)	
	= P[(Shell from A hits the plane and Shell from B does not hit the plane) or (Shell)	
	from A does not hit the plane and Shell from B hits the plane)]	1
	$= 0.3 \times 0.8 + 0.7 \times 0.2 = 0.38$	1
	(ii)P(Shell fired from B hit the plane/Exactly one of them hit the plane)	-
	$= \frac{P(\text{Shell fired from B hit the plane} \cap \text{Exactly one of them hit the plane})}{P(\text{Burghered})}$	
	P(Exactly one of them hit the plane)	

P(Shell from only B hit the plane)	1
P(Exactly one of them hit the plane)	
0.147	1
$=\frac{1}{0.38}=\frac{1}{19}$	1